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The passage of D3,1C2H 6 and B2H 6 toward a D2h bridged structure, and the motion of a methyl 
proton maintaining C s symmetry in C2H;- and CH3BH 2 are described by integral Hellmann-Feynman 
computations in a Frost floating spherical Gaussian basis. Marron and Weare's variational corrections 
to the integral Hellmann-Feynman formula for AE between states A and B are evaluated with varia- 
tional functions of the form tI(~A/SAB--~B) used to refine the state B. An analogous function 
~(OB/SAB -- ~a) refines state A. Both ~/and ~ are chosen variationally to minimize Marron and Weare's 
functional. No obvious advantage of the variational method became apparent in this simple application. 
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The integral He l lmann-Feynman . theorem developed by Parr  [1], A E =  

( t P A I A H ] O B ) / ( t p A l O B ) + A V , ,  has contributed significantly to the qualitative 
understanding of charge reorganization and energy changes accompanying 
changes in nuclear position or nuclear charge [2]. The computat ional  history of  the 
integral Hel lmann-Feynman formula is not so happy, however. The error in the 
integral Hel lmann-Feynman estimate in energy changes is of  the first order in 
errors of  the wave functions 0A, OB, and is also highly sensitive to the departure 
of  the overlap (OAIOB) f rom unity. Even estimable wave functions yield erratic 
estimates of  energy changes, according to tests on NH3, H202 [-3], and He [4] 
atom. Epstein [5] and Silverstone [6] described conditions under which expec- 
tation value ~ifferences and integral Hel lmann-Feynman estimates agree. In a 
previous communicat ion [7], we have described the improvement in integral 
Hel lmann-Feynman computat ional  stability accompanying the guarantee of  
satisfaction of the differential limit of  the Hel lmann-Feynman formula. Use of a 
common (AO) basis for the computat ion of isoelectronic systems also improves 
the integral Hel lmann-Feynman estimate considerably. 

In this report we describe an application of Marron  and Weare 's  stationary 
principle for the energy change [8], which may according to the originators provide 
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a better estimate of AE than either expectation value differences or direct integral 
Hellmann-Feynman computation. This claim was substantiated by results on 
He + --, H and H2 ~ --. H + H  + [8]. 

To approach the idea of a variational refinement of the integral Hellmann- 
Feynman formula, consider a perturbation expression for AE accompanying a 
shift in nuclear position so that Ho -* Hv = Ho + V 

AE= Voo + <~So] Vtqso(i)). (1) 

Here i/s(o ~) is a correction to 0o reflecting the change in Hamiltonian from Ho to HF. 
Requiring that (0(ol)10o) = 0 and that 0o + 0(o 1) resemble 0v, we can write 

=~0v--~,0. (2) 

Here Soy= <~¢Ol~/F>~ Inserting this expression for 0(o 1) in the equation for AE, 
we find 

A E  = g g°F goo- g0e (3) 
oo + So- ~ -  S0 v 

This is just the integral Hellmann-Feynman formula for the change in electronic 
energy. We gather the impression that if SOF is large, that the integral Hellmann- 
Feynman formula is equivalent with this special form of second order perturbation 
theory. 

If we do not make the rather special assumption written above for 0(O 1), but 
write 

+o) 
we can consider t# to be a variational parameter. Minimizing the functional 

<O(O"IHo - eolO~o ' '> + 2 < 0'o')1 V -  Eo" 'I ~,o > -- J(0~o '>) (5) 

with respect to t#, which guarantees satisfaction of the first order perturbation 
equation to the maximum extent possible in the range of choices for ~(Ol), we find 

( > ~o~- oo) e_Eo_ 
~7 - 2 E 0 -~- ~ - °~0 / °  [ ~v > ÷ S~ F / ( 6 ) 

SOF 

This expression will in general be different from unity. Its departure from unity 
shows an inconsistency between the integral Hellmann-Feynman (iHF) formula 
and the first terms of the perturbation sequence. Higher terms may improve the 
perturbation approximation, and may tend to cancel the term proportional to 
(1 -~) 
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(VoF Voo) A E . .  = Voo * 

SoF Voo 
= Voo + (7) 

(0olHol0~) /E~-Eo- V~5 
2Eo-2  

So F ~-~- ) 

=AEiHF+(1-t/)  \SoF Voo 

(VOF-- VooSoF) 2 
= V°° q 2SZFEo--  2So~(0oIHoIOF) + EF-- Eo- V~ 

Note that evaluation of this expression requires knowledge of the energy expec- 
tation value difference, as well as the two wave functions 71 o and 0F- Further the 
relatively unfamiliar integral (0o]Ho]0v) must be evaluated. 

We do not pursue this expression further, since it does not make symmetric 
reference to Ho and H F. Instead we turn to the comparable expressions developed 
by Marron and Weare [8-]. In their investigation of the process H -* He + and 
H~ ~ H + H +, they minimized the functionals 

/7(I//(ol)) = [ ( 0 F [ H  ° _ Eol 0(Ol,) ~ <0r[ V-(E~SoF-- E°)I0v)] 2J (8a) 

F(O(F1))=[ (O°[Hv-EFIO(F1)> (00]V--(E~F---E0)100)]2'SoT ] (8b) 

with 0(O 1) and 0(v i) variational corrections to 0o and 0F respectively. We choose 

0(Ol) = ~/(S~F-- 00 ) , (ga) 

0(vl) = ~ (S~F-- 0F ) , (gb) 

and minimize N0(o ll) and F(0(o 1)) with respect to r/and 4. 
We obtain the extremum expression for [A HI, the variational energy difference: 

- I  ,[ (EF -- Eo 2 VFF) ( (00 IHoIOF)  - -  S°vE°) [~H,l AEinv + (lo) 
(E~- Eo- v ~ -  So~(0ol~/ol0~)- sg~Eo 

].. 
E ~ -  No - moo + So~<OolH~[O~) + S ~ E ,  J 

If SOF is near unity, the variational correction terms are such that [AH,I is stable 
through first order (to second order) in wave function errors insofar as the trial 
functions 0(o 1), 0~ ~ can represent the response of the initial and final systems to the 
interconversion. The size of the correction reflects the inadequacy of the integral 
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Table 1. Expectation, integral Hel lmann-Feynman,  and Marron-Weare variational energy differences a 

X o X F S0F A W ~QiI-IF [AJ{]  z] Vnn 

a) BaH 6 
EQ 0.5 0.6256 1.3818 1.0926 0.4097 -1 .3722  
0.5 1.0 0.3209 2.0916 1.8385 - 3.0571 -2 .0977  
1.0 1.5 0.8105 0.6759 0.7190 0.7317 -0 .6746  
EC ST 0.4307 -0 .0135 -0 .0105 -0 .2855 

b) C2H 6 
ECL ST 0.6527 -0 .0213 -0 .0333  -0 .0160  +0.0118 
2.0 ST 0.9940 0.2622 0.2666 0.2658 - 0.2636 
1.5 2.0 0.9720 0.2372 0.2157 0.2202 -0 .2651 
1.0 1.5 0.9459 0.2504 0.2444 0.2407 -0 .3370  
0.5 1.0 +0.7338 -0 .6750  -0 .6865  -0 .6588 +0.6134 

c) c2H; 
- 1.0 EQ 0.9637 0.1276 0.1390 0.1413 - 0 . I 4 4 6  
- 0 . 5  - 1 . 0  0.9448 0.3144 0.3256 0.3318 -0 .3243 

0.0 - 0 . 5  0.9099 0.5279 0.5399 0.5584 -0 .5270  

d) CH3BH 2 
EQ - 2 . 2 5  0.9516 0.1005 0.1071 0.1084 -0 .1204  

- 1.5 EQ 0.9894 0.1862 0.1798 0.1800 -0 .1702  
- 0 . 7 5  - 1.5 0.9341 0.5750 0.5550 0.5670 -0 .5756 
+0.0  - 0 . 7 5  0.8920 0.2875 0.3476 0.3652 --0.3024 
+0.75 0.0 0.9698 0.4506 0.4927 0.4881 -0 .3655 
- 0 . 5 0  - 0 . 7 5  0.9896 0.1289 0.1343 0.1346 -0 .1344  b 

0.0 - 0 . 5  0.9416 0.1586 0.2130 0.2165 -0 .1680  
0.2875 0.3473 0.3511 - 0.3024 

a Differences are E(XF)-E(Xo),  final energies less initial energies. EQ =equi l ibr ium geometry, EC = 
eclipsed, ST = staggered; X =  reaction coordinate defined in text; A W =  expectation value difference; 
OmF = integral Hel lmann-Feynman estimate; [A ~ ] = variational estimate; A V,n = change in nuclear 
repulsion energy. Xo, Xv are defined as X coordinates of the migrating hydrogens where the X axis I[ 
the vector connecting the heavy atoms. Energy is in Hartrees. 

b Sums of expectation value differences and nuclear repulsion differences are independent of  path, 
sums of AEiI-IF o r  [A.~4¢] are not. 

Hellmann-Feynman formula and/or the inadequacy of specific variational 
functions in iHF computations. 

In Marron and Weare's illustrations of their variation method, the virial 
theorem was satisfied by optimizing scale factors. We have chosen floating 
spherical Gaussian (Lewis or Frost) orbitals as a basis, and the subminimal set 
described by Frost [9] to represent ~0 and ~F, because the virial theorem can be 
satisfied by optimizing scale for rather larger systems than previously treated by 
Marron and Weare. Further, the differential form of the Hellmann-Feynman 
theorem can be satisfied by optimizing orbital location. 

The curious integrals ( @ o ] H o l ~ t v )  a n d  @oIHFIOF) in which (~OO]~V) ¢0, 
involve the orbitals of configuration 0, (a0) and configuration F, (bv). These orbitals 
are nonorthogonal both within a set fi or b, or between sets fi and b ((ao~bvj) -¢ 6ij; 
(aoiao~) ¢ 6ik; (bojbol) =/: 6jl). These integrals can be evaluated by the method of 
corresponding orbitals [10]. The necessary programs for integral Hellmann- 
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Feynman calculations, I ° perturbation calculations and corresponding orbitals 
were developed by JKG. 

We have assembled extensively but not perfectly optimized floating spherical 
Gaussian wave functions for the proton transfer motion maintaining a plane of 
symmetry in CH3CH ~- and CH3BH2, and for internal rotation and the bridging 
motion in C 2 H  6 and B z H  6 [these were computed in part by Lucy Cline Weiss as 
part of a term project in the graduate course "Chemical Applications of Quantum 
Mechanics"]. The sections of the energy surface were described by expectation 
values in a perfectly reasonable way. The direct proton transfer in CzH ~ was 
permitted only via a Czv intermediate; proton transfer from C to B in CH3BHz 
was strongly resisted. Internal rotation in C 2 H  6 was  opposed by ca. 6 kcal/mole, 
and ethane resisted bridging vigorously. BzH 6 preferred bridging, but the relative 
stability of the bridged form was underestimated (CI is apparently necessary to 
account for this stability) [11]. 

Our object is to compare expectation value differences, integral Hellmann- 
Feynman estimates of energy differences, and variational estimates of energy 
differences for these several motions. Results of these computations are sum- 
marized in Tables 1 a~l and Figs. 1, 2a~t. These tables contain expectation value 
differences, integral Hellmann-Feynman estimates, and variational estimates of 
energy changes, calculated according to Eq.(10). Fig. 1 contains a scattergram of 
the estimates of AE, while Fig. 2 shows potential curves deduced from A E  com- 
putations. The wave functions ~o and OF were obtained by Lewis orbital com- 
putations using the program by Frost and Rouse distributed by the Quantum 
Chemistry Program Exchange [12]. Complete optimization of all structures and 
functions was permitted, with the constraints of C~ symmetr!~ in CH3CHf and 
CH3BH/, and Czh symmetry in CzH 6 and BzH6, and specifications of the value 

z~ 

~--LO 

x Z  
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6 ° 
u_ 
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s Co ;i~ 

O : V A R I A T I O N A L  

• : INTEGRAL f l E L L M A N N  

FEYNMAN THEOREM 

Fig. 1. A plot of the relation of integral Hellmann-Feynman electronic energy changes (points) and 
variational estimates of electronic energy changes (circles) against expectation value differences shows 
a fair correlation between the three sets. These energy changes do not include nuclear repulsion energy 

changes 
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FEYNMAN 
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Fig. 2a. Potential curves (including nuclear repulsion) for C2H 6 motion from D2h "bridged" structure 
to D3d equilibrium structure. Curves are constructed from expectation values (points), integral 
Hellmann-Feynman values of energy differences (circles), and variational estimates of energy differences 
(squares). The origin E = 0  is the equilibrium D3d structure. The three estimates are qualitatively 

consistent in this case 
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Fig. 2b. Potential curves for B2H 6 motions computed in the three ways disagree drastically. Note a 
change of scale between E > 0  and E < 0 ,  where E = 0  refers to the D2 h bridged structure, and the 

discontinuity in the scale from - 1 Hartree to - 5 Hartrees 
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Fig. 2c. Integral Hellmann-Feynman and variational potential curves indicate that C2v bridged CzH~ 
is the most stable geometry, in contradiction to expectation values. Note that the energy scale is different 
from that of Fig. 2a: the maximum error in variational estimates is 0.06 Hartrees, in integral Hellman- 

Feynman estimates, 0.04 Hartrees 

4-.20 

÷ J O  

0.0 

CH3BH 2 

V A R I A T I O N A L  

I N T E G R A L  H E L L M A N N -  
,FEYNMAN 

• E XPECTATION VALUES 

EQUIL IBRIUM BRIDGE 

Fig. 2d. All three potential curves agree that there are stable open and bridge CH3BH 2 geometries. 
However, integral Hellmann-Feynman and variational energy estimates predict a slightly different 

structure for the bridged species 
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Fig. 3. Outside Region A, for serious errors in the wave functions of two species, a second order estimate 
of AE (points) can be worse than an estimate with first order errors (circles) if the second order errors 
of the latter estimate are small or tend to cancel the first order errors. We plot a straight line reflecting 
first order effects on AE computed with error in the wave function, and a parabola reflecting only 
second order effects on AE arising from wave function error. The lines intersect at two points. One 
corresponds to zero error in the wave function and zero error in AE. The other intersection corresponds 
to a second order error equal in value to the first order error; this intersection occurs for high curvature 
of the parabola. In the region A (small wave function error) the magnitude of AE error is less for the 
second order calculation than for the first order calculation. This is the situation we ordinarily think of 
when we contrast first and second order computations. However, outside region A the error in the 
second order value of AE exceeds the error of the first order value of AE. Thus the effort necessary to 

perform the second order computation is not always justified 

of  the reac t ion  coord ina tes .  The reac t ion  in the A B H  5 systems is the  t ransfer  o f  
hyd rogen  a t o m  f rom A to B ; the " r e a c t i o n "  in the  A2H 6 systems is the d i s to r t ion  
f rom D3a to a b r idged  D2h structure.  The  reac t ion  coord ina t e  is the difference in the 
X-coord ina t e  o f  the  mig ra t ing  hydrogen(s )  and  the X-coord ina t e  o f  the spher ica l  
Gauss i an  represent ing  the A - B  s igma b o n d  in the A B H  s systems;  in the A / H 6  
systems, the reac t ion  coo rd ina t e  is the  X-coord ina t e  of  a po ten t ia l  b r idge  hydrogen .  

F r o m  the figures and the tables,  one gathers  the impress ion  tha t  a l t hough  there  
is a s t rong  cor re la t ion  be tween the several  es t imates  o f  electronic energy changes  
(except for  pa tho log ica l  cases in B2H6), er rors  in the po ten t ia l  curves are large due 
to the  t endency  of  nuclear  energy changes  to  cancel  e lectronic  energy changes.  
A l t h o u g h  there is qua l i ta t ive  agreement  in the CH3BH2 and  C H 3 C H  3 curves,  
there  is a con t rad ic t ion  in the  descr ip t ions  o f  the relat ive s tabi l i ty  o f  b r idged  and  
open  forms of  CH3CH~-.  Fu r the r ,  mos t  serious,  the B2H6 curves p r o d u c e d  by  
direct  A E  c o m p u t a t i o n s  bear  no resemblance  to any reasonable  energy curves.  

W h e n  S0F is near  uni ty,  the va r i a t iona l  correc t ions  are  very small ,  as one might  
expect.  However ,  one m a j o r  fea ture  of  these compu ta t i ons  is tha t  (a) va r i a t iona l  
" co r r ec t i ons"  are often large,  pa r t i cu la r ly  if  S is small ,  and  (b) even when var ia-  
t ional  cor rec t ions  are c o m f o r t a b l y  small ,  the  va r ia t iona l ly  cor rec ted  energy dif- 
ference is no t  necessar i ly  in closer ag reement  with expecta t ion  value differences 
than  the s impler  integral  H e l l m a n n - F e y n m a n  est imate.  I t  is not  imposs ib le  tha t  
the va r i a t iona l ly  de t e rmined  es t imates  are  "be t t e r "  than  expecta t ion  value  dif- 
ferences in i sola ted  cases. F o r  example  the bar r ie r  to in ternal  ro ta t ion  is es t imated  
to be 6 kca l /mole  by  expec ta t ion  va lue  difference;  the integral  H e l l m a n n - F e y n m a n  
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estimate is 13.5 kcal/mole, while the variational estimate is the best of the three, 
2.6 kcal/mole [ 13]. However, the variational estimate can be far worse-ludicrously 
worse - than expectation value differences. In B2H 6 the barrier to internal rotation 
is estimated as 0.0105 Hartrees by the integral-Hellmann-Feynman formula, 
0.0135 by expectation value difference, and 0.285 by the variation method, more 
than an order of magnitude away from a reasonable estimate. This deterioration 
in a second order estimate relative to a first order estimate can be understood 
qualitatively by reference to the graph in Fig. 3. The utility of the variational 
correction depends on the magnitude of the slope in the Y2inv-wave function plot 
relative to the curvature in the [AW]-wave function plot. In certain cases the 
guarantee of first-order stability in [A W] may carry with it an increase in curvature 
of the error plot. In Region A (Fig. 3), the variational correction is useful; outside 
A, the "correction" is of no use. 

In this restricted application at least, the variational method shows no sub- 
stantial advantage over the simplest integral Hellmann-Feynman formula. The 
problem may lie in the oversimplified choice of mixing only I//A with ~'B in the varia- 
tion, or may lie within the variation expression itself. The first restriction can be 
overcome at some computational expense, by increasing the flexibility of the varia- 
tion. However, if the variationally stable expression does not provide the accuracy 
required, (the guarantee that energy errors are of second order in wave function 
errors does not imply that the errors are small) other expressions must be sought. 
To make a choice between these alternatives, substantial computation may be 
necessary. We are not inclined to pursue the test, since we have shown that given 
use of a common basis, the simple integral Hellmann-Feynman formula becomes 
quite accurate [7]. 

This work was made possible by generous grants of computation time by the Division of Academic 
Computing of the University of Virginia. 
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